CITIZEN SCIENCEII of Citizen Science Unit is support of the Sustainable in support of the Susta

Knowledge for Change: A decade of Citizen Science (2020–2030)

HI-TERRA | Broaden your insights of drops.

Presenter: Gülşen Otçu

Hitsoft R&D Center What we do

Developing future technologies

- Growing since 2019
- >5 completed ML, DL, blockchain projects
- >2 on-going ML projects

Creating value

- >University-industry collaborations
- Qualified human resources
- Growth and expansion on R&D
- >Training activities and young talent scouting.

AIARTIFICIAL
INTELLIGENCE

BLOCKCHAIN

ML/DL

MACHINE

LEARNING /

DEEP LEARNING

IoT INTERNET OF THINGS

IMAGE PROCESSING

Hitsoft R&D Team **WeObserve ODC Challenge**

>We produce technology and do deep learning to create a sustainable future.

>We aim to lead more resource efficient society and businesses.

Bülent BEDİR Senior Product Manager Strategy & Artificial Intelligence

Analyst, Project Executive Sustainability & Concept Design

Emre YAZICI Chief Artificial **Intelligence Scientist**

Ersin KANAR R&D Software Developer Data Science

HI-TERRA: Soil Moisture Forecast Solution An Intelligent Infrastructure

Quick. Easy. Reliable Soil Control System

Hi-Terra transforms GROW field sensor, weather condition and soil characteristics data into meaningful insights about soil moisture

- Helps to minimize artificial watering
- Uses machine learning and deep learning technology in agricultural practices
- Creates dynamic forecasts for 24-hr
- >Warning system for critical levels, important weather conditions or anomalies.

Objectives of HI-TERRA

- Model soil moisture
- Forecast soil moisture

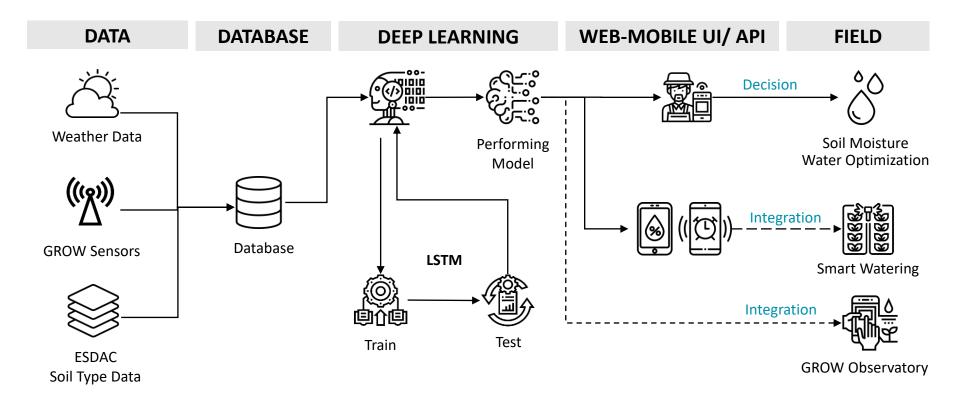
 Create societal and sustainability impact

- Soil, field, crop health
- Optimize water use

- Data-driven agriculture
- Smart resource use

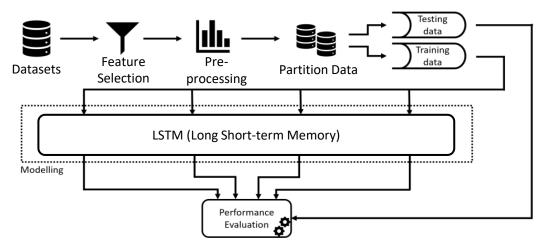
- Dynamic learning -LSTM
- Intelligent infrastructure

- Climate action
- Tackle SDGs


Current Stage of Development HI-Terra Roadmap

TRL 1 BASIC PRINCIPLES	TRL 2 CONCEPT	TRL 3 PoC	TRL 4 LAB VALIDATION	TRL 5 VALIDATION
Dataset selection New datasets Feature selection Idea creation Research about soil moisture and related parameters for water use Concept draft	GROW Data normalization Pre-processing Feature extraction Weather data integration Elaboration of use cases and application span User group selection Market analysis	Apply deep learning using LSTM model Train and Test Model soil moisture Improving accuracy Consolidate use-case and user groups Application scenarios Evaluation of potential	Analysis of soil datasets Improve model by using new data sets of soil type/ characteristics More train and test Improve accuracy Consolidate cases Consolidate stakeholder plans	Apply pilot platform to make a show case Observe real-world condition and get results Develop UI /integrate Improve and consolidate the concept
Top-down Bottom-up approach	Deep Learning method	Deep learning LSTM	On-Going	Improvement

What is HI-Terra?

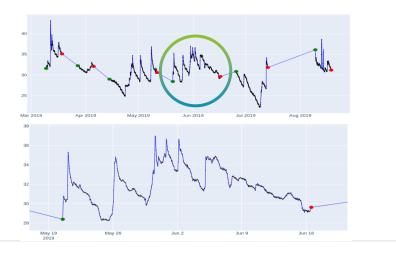

The concept and how the system works.

Our Methodology Deep learning in core

- Deep learning algorithms can reach conclusions as humans would by continually analyzing data with a given logical structure.
- Long short-term memory (LSTM) architecture which is a special kind of artificial recurrent neural networks (RNN) and capable of learning long-term dependencies.

GROW Dataset and LSTM - I Open-source Data use for HI-TERRA

Datasets

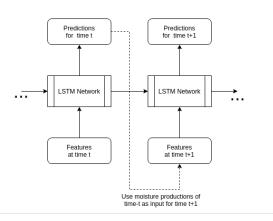

GROW Soil Condition Dataset

> DarkSky Weather Data

ESDAC Soil Database Available Water Capacity (AWC)

Pre-processing

- Sensors were closed at some intervals
- Split the time-series data into chunks; work in chunks



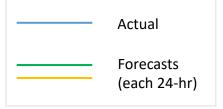
GROW Dataset and LSTM - I Open-source Data use for HI-TERRA

LSTM Modelling

 LSTM has an internal state that is updated at each time-step with new features

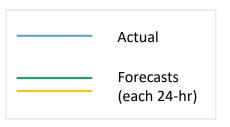
Experiment Setup

Train and Test


	Train	Test	All
# of Locations	1000	274	1274
# of Chunks	3086	881	3967
# of Hours	1392707	388448	1781155

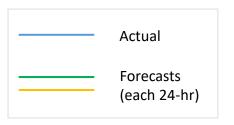
LSTM Modelling Results: Soil Moisture Forecasts - I


24-hour periodic forecasts MAPE score: 7.5%



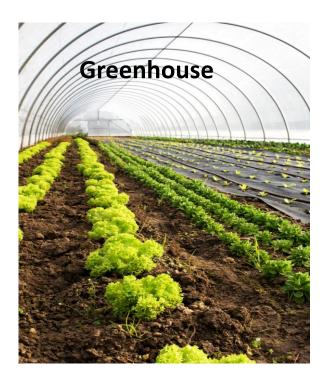
HI-TERRA | Broaden your insights of drops.

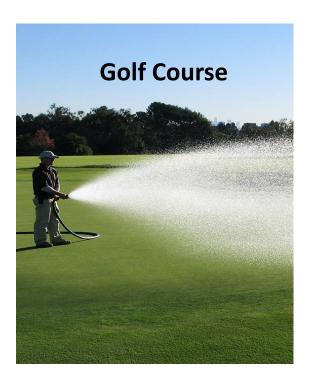
LSTM Modelling Results: Soil Moisture Forecasts - II



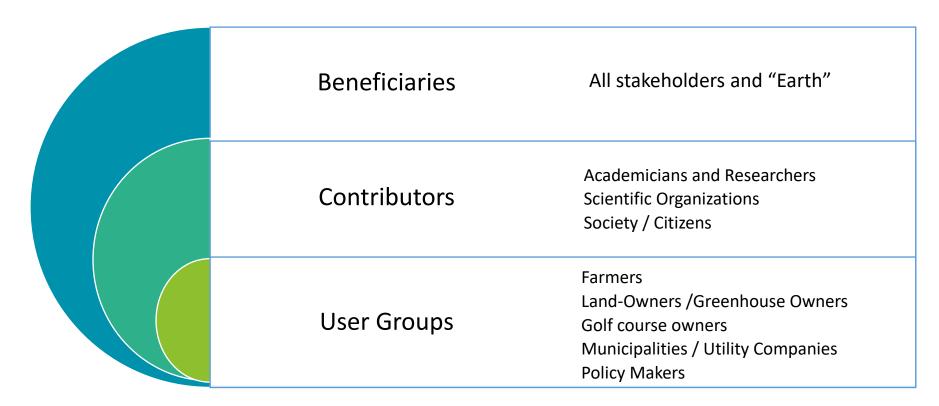
HI-TERRA | Broaden your insights of drops.

LSTM Modelling Results: Soil Moisture Forecasts - III




HI-TERRA | Broaden your insights of drops.

HI-Terra Use Cases



HI-TERRA | Broaden your insights of drops.

Stakeholders User Groups, Beneficiaries and Contributors

Sustainability of Hi-Terra Solution

Advantages Benefits of Predictive Soil Moisture Infrastructure

- >Tackles societal challenges on climate, food, land and resources, related to SDGs
- >Learns from multi-dimensional datasets (sensor, soil, weather data)
- >Open to perform better by improving LSTM model and learn iteratively.
- >Open to scale up, expand and integrate system to be an infrastructure
- >Predictions with high accuracy
- >Helps to save water and optimize watering periods
- >Sustainable, collaborative and contributing system for our common future

Next Steps to Contribute More How we will support citizen science

- Add Land
 Characteristics Datasets
- More Soil Property Data

- Contribute CitizenScience
- Open source

- Higher Accuracy /MAPE
- Improve Model

 Address climate action, food and land use challenges

 Forecast "How much water to be used" for irrigation

- Measure results
- Determine societal impact

14.-15.10.2020

Knowledge for Change: A decade of Citizen Science (2020–2030) in support of the Sustainable Development Goals