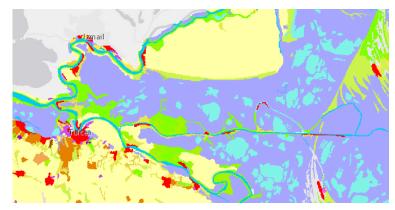


Harnessing Citizen Science and Remote Sensing for Improved environmental monitoring

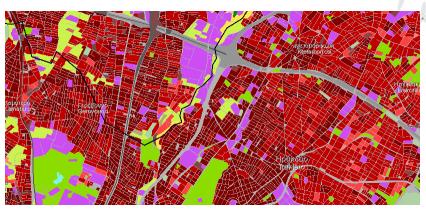
Valantis Tsiakos, Yannis Kopsinis, Athanasia Tsertou, Angelos Amditis / Institute of Communication and Computer Systems (ICCS)

Motivation & need

- Need for automatic assessment and monitoring of LC/LU
- Importance to detect seasonal changes, natural disasters, and human-related area development
- Scarce updates of existing products, timely data validation procedures



Corine Land Cover product of 2012 for Danube Delta-Romania, [Source: EEA]



Urban Atlas product of 2012 for Kifisos Basin-Greece, [Source: EEA]

H2020 Scent Citizen Observatory

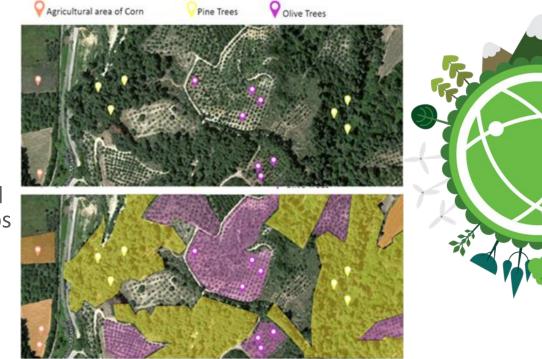
H2020 Scent Citizen Observatory

Urban Pilot Area: Kifisos river basin, Attica, Greece

Rural Pilot Area: Danube Delta, Tulcea, Romania

Scent Map Segmentation, Delineation, Characterization and Annotation tool

- Assign a semantic class (Scent taxonomy) to each pixel, (i.e. convert the raw data to a semantically meaningful raster map),
- Convert Scent taxonomy annotated points into annotated areas on the satellite/aerial maps and,
- Characterize whole areas for which a land-cover/use description is not available.



CO4EO webinar / Citizen Science in a remote sensing context: From examples to best practices

Pixel-wise semantic segmentation

Training data generation

Training data generation

Crowdsourced data (Danube Delta)

Bare soil / Low grass
Forest / Shrubs
Reeds green
Reeds dark
Concrete
River
Inland Marsh

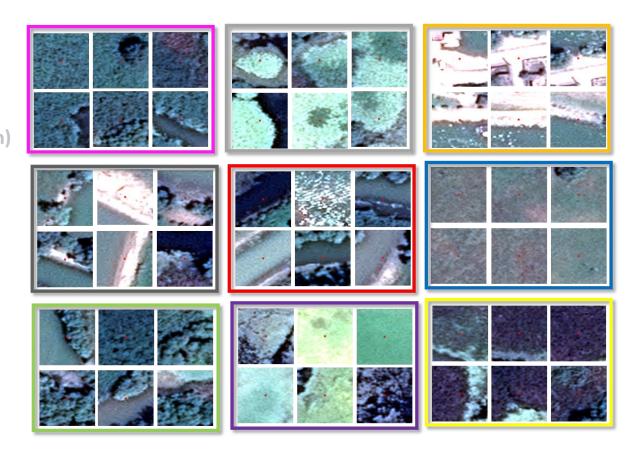
Examples of data tiles

Reeds (standard)

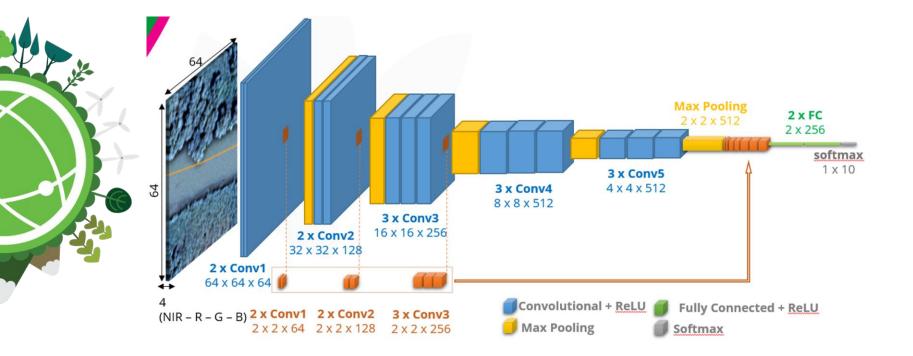
Concrete

Low grass

River



Scent Deep Neural Network Architecture



Scent DNN training strategy

Train stage one: Image Net

Train stage two: High resolution satellite images

farmland

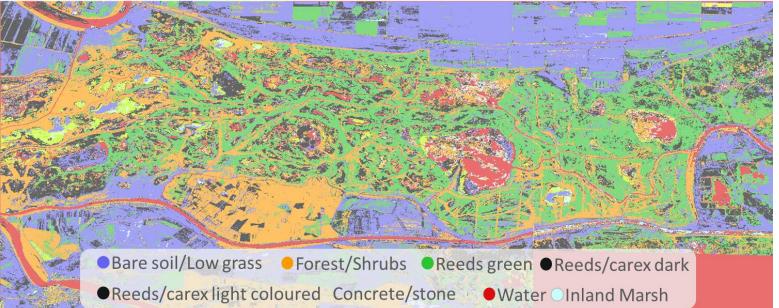
meadow

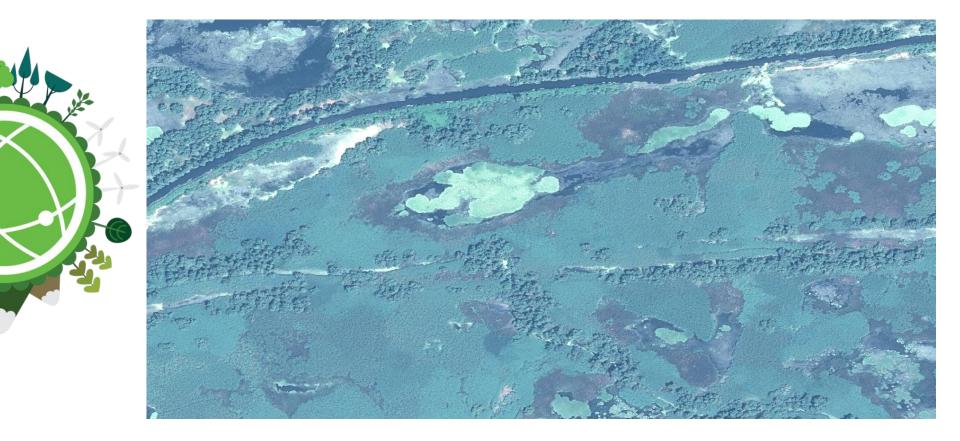
forest

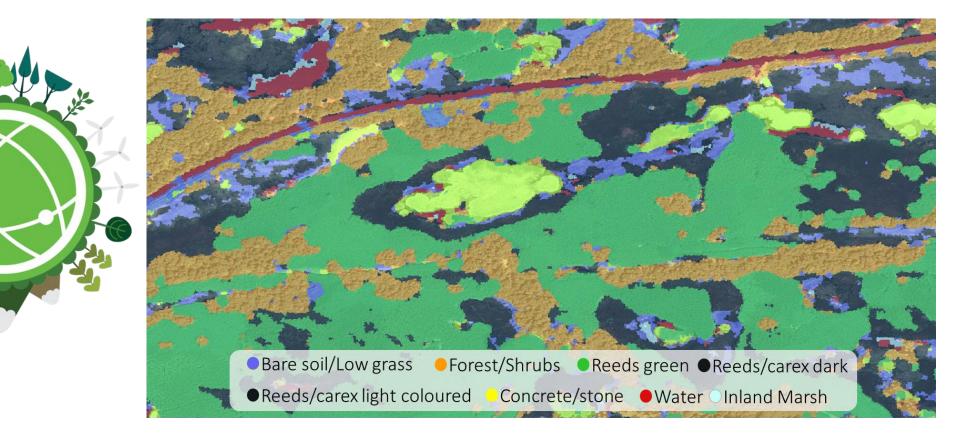
medium residential

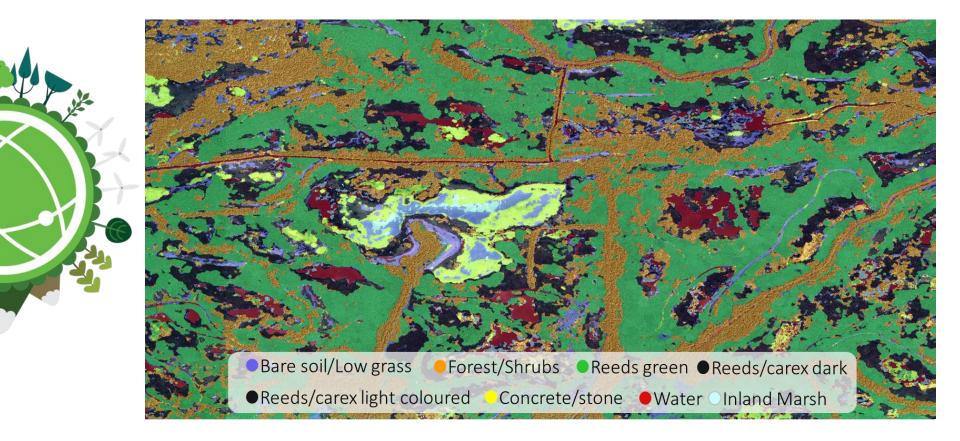
Train stage three: Last 3 layers were trained using augmented SCENT data

Results

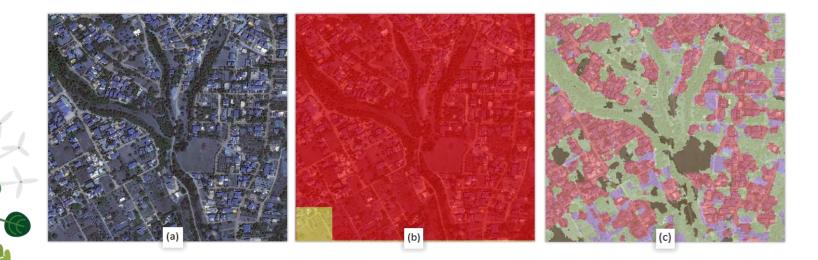






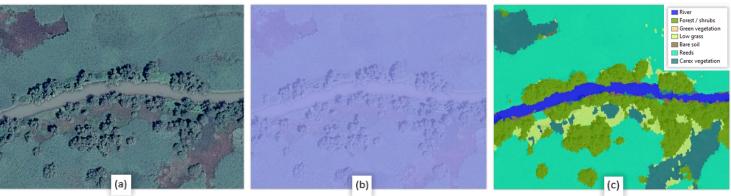


Analysis in conjunction with CORINE



SCENT classes	Area (km ²)	%	CORINE aggregated classes	Area (km ²)	%
Bare soil	17,62	12,17%	Bare areas (333)	1,8	1,24%
Cultivated areas (arable land,					
crops, pastures,	11 22	7,82%	Cultivated areas (231,242,243)	17 57	12,11
heterogeneous agricultural	11,32	7,0270	Cultivated aleas (231,242,243)	17,54	%
areas)					
Forest (including trees and			Forest (311,312,313,323,324,		39,90
herbaceous vegetation	73,39	50,68%	141,142)	57,78	%
associations)			141,142)		70
Artificial areas (buildings,	42,49	29,34%	Artificial areas	67,7	46,75
roads, paved areas, concrete)	72,73	23,3470	(111,112,121,122,124)	07,7	%

Analysis in conjunction with CORINE



SCENT Aggregated classes	Area (km ²)	%	CORINE Aggregated classes	Area (km²)	%
Concrete / stone	0,23	0,09%	Artificial areas (112)	0,70	0,40%
River / water	18,24	7,40%	Inland water (511,512)	38,93	15,80%
Forest / shrubs	68,54	27,81%	Forest (311, 321, 324)	55,99	22,72%
Inland marsh (including reeds, green and carex vegetation)	129,15	52,41%	Inland marsh (411)	143,53	58,24%
Low grass & bare soil	30,26	12,28%	Pastures and arable land (211,231)	7,28	2,95%

THANK YOU!

Any Questions?

Valantis Tsiakos

Scientific Project Manager

I-SENSE Group, Institute of Communication & Computer Systems (ICCS)

valantis.tsiakos@iccs.gr

This project has received funding from the EU's Horizon 2020 research and innovation programme under GA no 769926